
TowerOS: An Operating System for Network-Boundary
 Converged Multi-Level Secure Computing

Adam Krellenstein
adam@krellenstein.com

I. Background
A converged multi-level secure (MLS) computing sys-

tem is one that allows the user to operate across distinct
security domains through a single user interface (UI).
Traditional MLS systems rely on hardware-level isolation
using a keyboard-video-mouse (KVM) switch and no UI
compositing[1] or more recently with software-level iso-
lation and software-based UI compositing (e.g. using a
hypervisor).[2] While hardware-level isolation is theoret-
ically much more secure than software-level isolation, the
overall usability of any MLS system without user-inter-
face compositing is necessarily poor in comparison, be-
cause there is no single, unified interface provided for the
user.

“Extant software solutions do combine the user interfaces
for multiple domains onto the same desktop, however these
rely on large trusted computing bases comprising hypervi-
sor, security domain software, and drivers—making them
too complex to evaluate and too risky to accredit for high
assurance use. Software solutions fail to address the in-
creasing risk of compromised hardware, implicitly incor-
porating many hardware components into the trusted
computing base.”[3]

Recently, a system for hardware-level isolation with hard-
ware-based UI compositing was developed;[3] but the us-
ability of even this design is still much lower than that of
those with software-based compositing because all inter-
faces between the security domains must be implemented
in silico. Raytheon’s Forcepoint Trusted Thin Client and
Remote allows users to access multiple isolated networks
from a single thin client, but has no capability for user-
interface compositing.[4]

II. Architecture
TowerOS implements a new, hybrid design which per-

forms software-based user-interface compositing with hard-
ware-level isolation using standard network interfaces.
TowerOS relegates each security domain to an indepen-

dent headless computer, each with its own application
state and security policies. These Hosts are networked to-
gether over a LAN and accessible by the user through a
Thin Client device that is connected to the same network.
The applications running on the various hosts are com-
posited within a single user interface running on the thin
client using a combination of multi-function network pro-
tocols (such as SSH) and desktop-sharing software (such
as VNC over SSL).

Instead of having to trust an operating system to be able
properly to isolate different security domains all running
on shared hardware, our design relies on cryptographi-
cally secure networking protocols to connect multiple in-
dependent computers together to form a single, virtual
device that from the user’s perspective functions very
much like a normal desktop computer. Instead of running
multiple virtual machines on a single computer (whether
to save costs or to isolate different security domains at
the level of a hypervisor) we instead merge together mul-
tiple computers into a single virtual machine, where the
actual hardware that any given application runs on (for
security, or, for that matter, for performance) is abstracted
away. This provides for the best of both words: the secu-
rity guarantees of hardware isolation plus the usability
and flexibility of interfaces implemented in software.

Such a system may be built exclusively with commer-
cial off-the-shelf (COTS) hardware, and its trusted com-
puting base (TCB) of the system is limited to the codebase
for the networking protocols (SSH, etc.), which may be
both widely used and easily audited. For example, each
host would run whichever user applications are allowed
within the security domain associated with the device in
question. So one host might be running an e-mail client,
another a word processor, another a password manager,
and another a web browser. One host might be left state-
less and reserved for hotloading with fresh copies of an
operating system. The user would be able to access each
of these applications from the laptop thin client using SSH
and VNC, with application windows composited into a
single graphical user interface (GUI) using the desktop
compositor. Clipboard management could be performed

mailto:adam@krellenstein.com

on the laptop using the thin client, and file transfers could
be handled easily with scp or with a local file browser and
sshfs.

III. Threat Model
The security properties of this design compare very fa-

vorably to those of software-boundary multi-level secure
systems. First and foremost, such solutions rely on a large
trusted computing base, including not only the (very
complex) hypervisor, but also much of the underlying
hardware (also very complex!) The network boundary is
an ideal security boundary because it was historically de-
signed explicitly for the interconnection of independent
devices, often with different security policies. Both the
hardware interface and the software compositing layer
are small and well understood.

The only data being pushed to the thin client are pix-
els, clipboard data and audio streams from the hosts (and
data are never communicated directly from host to host.)
As a consequence, so long as the user of the thin client
doesn’t explicitly pull malware onto the device, say with
SSH, the risk of compromising the thin client (and by ex-
tension, the other hosts) is practically-speaking limited to
the risk of critical input validation errors in the screen-
sharing software itself or at the level of the network dri-
vers. That is, even if the UI compositor on the thin-client
machine does not enforce any security boundaries be-
tween application windows, the primary attack surface is
limited to the only application running in those windows,
e.g. VNC.

IV. Comparison with Qubes OS
The state-of-the-art in secure computing systems[5] is

Qubes OS is an open-source converged multi-level secure
operating system that uses hardware virtualization (with
Xen) to isolate security domains. As the former lead de-
veloper of GrapheneOS put it:

You can think of QubesOS as a way of approximating hav-
ing 20 laptops with their own purposes, but all on 1 lap-
top. The security of each compartment still matters, and
beyond isolating some drivers it doesn’t do much to ad-
dress that, but it does successfully approximate air gapped
machines to a large extent. It’s still significantly more se-
cure to have separate machines but it’s very impractical /
unrealistic especially at that scale. There is no better option
for approximating the security of using separate comput-
ers for different sets of tasks / identities.[6]

— D. Micay

With TowerOS, we hope to address this deficiency in
the software ecosystem. In the following, we compare
TowerOS with QubesOS, and we note the advantages and
disadvantages of the different architectures.
A. Advantages

1. Most importantly, Qubes OS relies heavily on the
security guarantees of Xen, which is large, compli-
cated, and has a history of serious security vulner-
abilities.[7]

“In recent years, as more and more top notch re-
searchers have begun scrutinizing Xen, a number of
security bugs have been discovered. While many of
them did not affect the security of Qubes OS, there
were still too many that did.”[8]

— J. Rutkowska

2. Qubes OS relies on the security properties of the
hardware it runs on.

“Other problems arise from the underlying archi-
tecture of the x86 platform, where various in-
ter-VM side- and covert-channels are made pos-
sible thanks to the aggressively optimized multi-
core CPU architecture, most spectacularly demon-
strated by the recently published Meltdown and
Spectre attacks. Fundamental problems in other ar-
eas of the underlying hardware have also been dis-
covered, such as the Row Hammer Attack.”[8]

— J. Rutkowska

3. The complexity inherent in the design of Qubes OS
makes the operating system difficult both to main-
tain and to use. Accordingly, Qubes OS develop-
ment has slowed significantly in recent years: as of
December 2022, the last release (v4.1.x, in February
2022) came almost four years after the previous one
(v4.0.x in March 2018).[9]

4. Qubes OS has support only for extremely few hard-
ware configurations. As of December 2022, are only
three laptops that are known to be fully compati-
ble with Qubes OS.[10] With only moderate effort,
TowerOS may be hybridized with any modern op-
erating system so long as that operating system
supports the standard network interfaces required
for SSH, etc. This flexibility can enable the system
to run a wide variety of software and hardware.

B. Disadvantages
1. The primary disadvantage of the proposed design

is the additional physical bulk of the computer in

http://qubes-os.org
https://xenbits.xen.org/xsa/
https://www.qubes-os.org/security/xsa/
https://meltdownattack.com
https://meltdownattack.com
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

comparison to a single laptop running a software-
boundary solution such as Qubes OS.

2. With Qubes OS, each security domain has no hard-
ware footprint, so it is theoretically easier to sup-
port a greater number of security domains.

3. In some cases, the security domain isolation within
Qubes OS may be able to be more granular. For ex-
ample, Qubes OS supports isolating the USB-pro-
tocol processing and the handling of the block de-
vice, when loading data from a USB key; however
this would not be very practical with TowerOS.

V. Conclusion
Using “physically separate qubes” was proposed in

the Qubes OS blog post cited above (in a hybrid design
similar to what is being described here);[8] but the sug-
gested architecture would leave hardware-boundary iso-
lation as a second-class citizen and, by continuing to rely
on a derivative of today’s Qubes OS, preserve all of the
hardware-support, maintainability and usability issues
that the OS suffers from today. An operating system de-
sired specifically for pure network-boundary converged
multi-level secure computing, as described in this docu-
ment, is simultaneously much simpler, more secure and
more user-friendly than Qubes OS. Indeed, this design
addresses all of the major problems with QubesOS com-
pletely.

Bibliography
[1] A. Soffer and O. Vaisband, “Secure KVM device en-

suring isolation of host computers”, Jul. 01, 2014

[2] A. Issa, T. Murray, and G. Ernst, “In search of perfect
users: towards understanding the usability of con-
verged multi-level secure user interfaces.”, 2018.

[3] M. Beaumont, J. McCarthy, and T. Murray, “The
cross domain desktop compositor: Using hardware-
based video compositing for a multi-level secure
user interface.”, 2016.

[4] Raytheon Company, “Raytheon Trusted Thin
Client”. [Online]. Available: https://www.
raytheon.com/capabilities/rtnwcm/groups/
gallery/documents/digitalasset/rtn_216411.pdf

[5] E. Snowden, [Online]. Available: https://twitter.
com/snowden/status/781493632293605376

[6] D. Micay, “OS Security: iOS vs GrapheneOS vs
stock Android”. [Online]. Available: https://www.

reddit.com/r/GrapheneOS/comments/bddq5u/
comment/ekze9n6/

[7] T. d. Raadt, “Re: About Xen: maybe a reiterative
question but ..”. [Online]. Available: https://marc.
info/?l=openbsd-misc&m=119318909016582

[8] J. Rutkowska, “Qubes Air: Generalizing the Qubes
Architecture”. [Online]. Available: https://www.
qubes-os.org/news/2018/01/22/qubes-air

[9] Qubes OS, “Download Qubes OS”. [Online]. Avail-
able: https://www.qubes-os.org/downloads

[10] Qubes OS, “Certified Hardware”. [On-
line]. Available: https://www.qubes-os.org/doc/
certified-hardware

https://www.raytheon.com/capabilities/rtnwcm/groups/gallery/documents/digitalasset/rtn_216411.pdf
https://www.raytheon.com/capabilities/rtnwcm/groups/gallery/documents/digitalasset/rtn_216411.pdf
https://www.raytheon.com/capabilities/rtnwcm/groups/gallery/documents/digitalasset/rtn_216411.pdf
https://twitter.com/snowden/status/781493632293605376
https://twitter.com/snowden/status/781493632293605376
https://www.reddit.com/r/GrapheneOS/comments/bddq5u/comment/ekze9n6/
https://www.reddit.com/r/GrapheneOS/comments/bddq5u/comment/ekze9n6/
https://www.reddit.com/r/GrapheneOS/comments/bddq5u/comment/ekze9n6/
https://marc.info/?l=openbsd-misc&m=119318909016582
https://marc.info/?l=openbsd-misc&m=119318909016582
https://www.qubes-os.org/news/2018/01/22/qubes-air
https://www.qubes-os.org/news/2018/01/22/qubes-air
https://www.qubes-os.org/downloads
https://www.qubes-os.org/doc/certified-hardware
https://www.qubes-os.org/doc/certified-hardware

	Background
	Architecture
	Threat Model
	Comparison with Qubes OS
	Advantages
	Disadvantages

	Conclusion
	Bibliography

